Induction-heated Tool Machining of Elastomers—part 1: Finite Difference Thermal Modeling and Experimental Validation
نویسندگان
چکیده
& Experiments and finite difference thermal modeling of the induction-heated tool for end milling of elastomers are investigated. Three sets of experiments are designed to calibrate the contact thermocouple for the tool tip temperature measurement, study the effect of tool rotational speed on induction heat generation and convective heat transfer, and measure the tool temperature distribution for finite difference inverse heat transfer solution and validation of modeling results. Experimental results indicate that effects of tool rotation on induction heat generation and convective heat transfer are negligible when the spindle speed is below 2000 rpm. A finite difference thermal model of the tool and insulator is developed to predict the distribution of tool temperature. The thermal model of a stationary tool can be expanded to predict the temperature distribution of an induction-heated rotary tool within a specific spindle speed range. Experimental measurements validate that the thermal model can accurately predict tool tip peak temperature.
منابع مشابه
Finite element modeling of 3 D turning of titanium
The finite element modeling and experimental validation of 3D turning of grade two commercially pure titanium are presented. The Third Wave AdvantEdge machining simulation software is applied for the finite element modeling. Machining experiments are conducted. The measured cutting forces and chip thickness are compared to finite element modeling results with good agreement. The effects of cutt...
متن کاملAnalytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
High-speed machining offers several advantages such as increased flexibility and productivity for discrete-part manufacturing. However, excessive heat generation and resulting high temperatures on the tool and workpiece surfaces in high-speed machining leads to a shorter tool life and poor part quality, especially if the tool edge geometry and cutting conditions were not selected properly. In t...
متن کاملDesign of Broaching Tool Using Finite Element Method for Achieving the Lowest Residual Tensile Stress in Machining of Ti6Al4V Alloy
The aim of this study, is to use finite element simulation to achieve the optimal geometry of a broaching tool that creates the lowest tensile stress at the machined surface of the Ti6Al4V alloy. It plays a major role in reducing production costs and improves the surface integrity of the machined parts. The type and amount of residual stress determined by the thermal and mechanical loads transm...
متن کامل3D Finite Element Modeling of High Speed Machining
This paper presents simulation of High Speed Machining of steel with coated carbide tools. More specifically, Third Wave Systems AdvantEdge commercial Finite Element Method code is employed in order to present turning models, under various machining conditions. As a novelty, the proposed models for High Speed Machining of steel are three-dimensional and are able to provide predictions on cuttin...
متن کاملPrediction of tool and chip temperature in continuous and interrupted machining
In this paper, a numerical model based on the finite difference method is presented to predict tool and chip temperature fields in continuous machining and time varying milling processes. Continuous or steady state machining operations like orthogonal cutting are studied by modeling the heat transfer between the tool and chip at the tool—rake face contact zone. The shear energy created in the p...
متن کامل